Recent Drug Sensitivity status of yeast like fungi

Naoko TAKAHASHI, Toshiko TSUKAHARA, Naoko CHINO, and Kumiko YOKOYAMA

要旨
当院は腫瘍治療、移植治療などに伴う日和見感染患者が多いため、口腔カンジダ症や深部真菌病の治療や予防のために、抗真菌剤の投与例も少なくない。過去数年間の臨床経過（呼吸器由来）からの酵母様真菌の分離状況は検出菌全体の2割強で推移している。その内訳はC.albicansがCandida属菌の半数以上を占め、次いでC.glabrataが分離されている。今回我々は、酵母真菌感受性キット（ASTY）を試用する機会を得たので、2002年3月から11月までに臨床分離された酵母様真菌97株について薬剤感性を把握する目的でMICの分布を調べた。その結果から、C.albicansは抗真菌剤に対する耐性菌は認められず、一方、他の菌種では抗真菌剤別に感受性株から耐性株まで多様な株が認められた。

はじめに

真菌の感受性試験は手技が煩雑であること、薬剤の発酵速度、形態などの理由から検査法の標準化を困難にし、ルーチン検査としては取り入れにくい現状がある。

1992年NCCLSよりmacrodilution法を原理とする薬剤感受性試験が勧告された。その後1997年に至る最終的にCandida属菌におけるMIC解釈のガイドラインが公表され標準公認化が承認された。しかし、この基準法は操作性の組織者や再現性による値ののままりさなどの問題があった。これらの問題を解決し、NCCLS標準法に準拠した検査キットとしてASTY（酵母真菌感受性キット）が市販され、操作性の简便さに加え高精度の薬剤感受性試験が可能となった。

当院において臨床分離された酵母様真菌についてASTYを用い、そのMIC分布から抗真菌剤に対する感受性株、耐性株の状況を調べた。その結果を基に耐性菌の有無、或いは菌種の違いによる感受性の状況について、若干の考察を加え報告する。

対象と方法

対象は2002年3月から11月までに入院患者から臨床分離された酵母様真菌97株。

97株の内訳はC.albicans 41株、C.glabrata 36株、C.krusei 8株、C.tropicalis 6株、C.parapsilosis 5株、Candida sp. 1株である。

菌種の同定はサモアカーカハンダ（関東化学株式会社）で実施した。

検査方法は酵母真菌薬剤感受性キットASTYを添付の説明書に従い実施し、4類の抗真菌剤、アンホテリシンB（AMPB-B）、フルシゾシン（5-FC）、フルコノゾル（FCZ）、ミコノゾル（MCZ）のMICを測定した。本キットは、酸化還元反応に基づく呈色反応を利用した微量液体希釈法である。

菌が発育したウエロは色調が青からピンクに変化するので、終端点の判定をする。

結果と考察

図1 〜 4に菌種別の抗真菌剤4剤に対するMICの分布結果を示す。

図1 C.albicans（41株）のMICの分布を示す。

AMPH-Bに対するMICは0.25〜1に、5-FCは0.125〜0.5に、FCZは0.125〜16に、MCZは0.03〜0.5分布する。

図2 C.glabrata（36株）のMICの分布を示す。

AMPH-Bに対するMICは0.5〜2に、5-FCは0.125〜32に、FCZは1〜64に、MCZは0.06〜8に分布する。

Key words：日和見感染、酵母様真菌感受性試験、ASTY
図1 Calbicans（41株）

図2 C.glabrata（36株）

図3 C.krusei（8株）のMICの分布を示す。
AMPH-B に対するMICは1～2に、5-FCは0.125～32に、FCZは8～≥64に、MCZは0.25～8に分布する。

図4 C.tropicalis（6株）のMICの分布を示す。
AMPH-B に対するMICは1に、5-FCは

0.125〜0.5に、FCZは0.5〜8、MCZは0.5〜8に分布する。

図5 C.parapsilosis（5株）のMIC分布を示す。AMP11-Bに対するMICは0.5〜1に、5-FCは0.125〜0.5に、FCZは0.5〜8に、MCZは0.5〜2に分布する。

図6〜図9は抗真菌剤別の各菌種に対するMIC分布を示す。
図6にAMPH-B，図7に5-FC，図8にFCZ，図9にMCZの分布を示す。
4剤の抗真菌剤の結果からC.albicansについてはFCZを除く全ての抗真菌剤に対しMICが1以下に収束しているが，C.glabrataについてはAMPH-Bに0.5～2，5-FCに1以下，FCZに1～64以上，MCZに0.06～8と多様に分布する。他の菌種についても試験株数は少ないが，測定濃度域に広く分布していることがわかる。
一方，抗真菌剤別にみると，酵母様真菌97株につ
表1 Candida属in vitro感受性試験結果の解釈指針（M27-A）

<table>
<thead>
<tr>
<th>抗真菌剤</th>
<th>感受性（S）</th>
<th>容量依存的耐性（H）</th>
<th>中間（I）</th>
<th>耐性（R）</th>
</tr>
</thead>
<tbody>
<tr>
<td>フルコナゾール（FCZ）</td>
<td>≤8</td>
<td>16～32</td>
<td>-</td>
<td>≥64</td>
</tr>
<tr>
<td>イトラコナゾール（ITZ）</td>
<td>≤0.125</td>
<td>0.25～0.5</td>
<td>-</td>
<td>≥1</td>
</tr>
<tr>
<td>フルトンゾジン（5-FC）</td>
<td>≤4</td>
<td>-</td>
<td>8～16</td>
<td>≥32（μg/ml）</td>
</tr>
</tbody>
</table>

（NCCLS M27-A.1997より）

いって測定したMIC分布は、AMPH-Bでは全菌種で2以下に分布が収束し、5-FCでもC.kruzeiを除いては1以下に分布がほぼ収束している。又、MCZではC.albicansが0.5以下に収束するが、FCZにおいては、測定された薬剤濃度域に幅広く分布している。

次に、表1にCandida属菌に対する各種抗真菌剤のNCCLSによるMICと臨床的プレクサポートを示す。この指針からC.albicansとC.glabrataの感受性結果について考察する。

今回のASTYでは4剤の抗真菌剤を調べたが、この判定基準のなかではFCZと5-FCについて基準がある。C.albicansの感受性性株、耐性株の状況は、FCZでC.albicans（41株）のMICは2以下に40株（97.6%）、1株のMICは16で、全株感受性を示している（1株は用量依存的耐性）。

5-FCではC.albicans（41株）のMICは0.5以下に全て分布し、全株感受性を示している。また、C.glabrata（36株）ではFCZでMICが広く分布し、耐性株が多くみられる。5-FCではMICが1以下にほぼ収束し、ほとんどの株が感受性を示しているが、わずかながら耐性菌も認められる。従ってNCCLSによる臨床的プレクサポートにより、当院の現状としてC.albicansに関して耐性菌はまだ検出されていないと思われる。その理由、日常の細菌検査のなかでは菌種の同定のみで有益な情報提供を可能にすると思われる。最近24時間でC.albicansか、それ以外かは確認が可能であり、場合によっては敗血症などの抗真菌剤治療に有益な患者情報を提供できるものと考える。

当院での過去2年間、入院患者における抗真菌剤使用状況をみると、2001年、2002年ともに注射薬ではアゾール系薬物のフルコナゾール（ジフルカゾール）を次いでボリエン系薬のアンホテリンB（ファンゲゾニ）が使用されている。経口薬での同様の傾向で使用されている。

フルコナゾールを中心とするアゾール系抗真菌薬療法はアンホテリンB療法と並んで深在性真菌症の化学療法の主流といわれている9）。当院においても口腔カンジダ症の治療、又は好中球減少症なども含む高リスク患者での深在性真菌症の発症予防の目的で投与されているようである。

フルコナゾールは抗真菌活性は低いにも関わらず、生体内で優れた治療効果を示すことから理想的な薬剤であるといわれている10）。当院での使用状況からもアゾール系薬の中心となっていることがうかがえる。アゾール系薬に対する耐性獲得は比較的難いといわれるが、AIDS患者でC.albicansフルコナゾール耐性株の出現の報告もある。その場合、多くのアゾール系薬にも交叉耐性を示す9）といわれる。

抗真菌剤感受性試験は1997年8月より深在性真菌症に限り検査適応している。

アゾール系薬に対する耐性菌も出現し始めた現在から考えると、将来には、宿主の状態を考慮した臨床からの感受性検査検査の必要にこたえ、情報提供することができる現実的と考える。そのためASTYは有用性があると考える。

最後に今回試用したASTYに関しては、2002年12月中旬より従来の4剤の抗真菌薬に加え、キャンディン系抗真菌薬ニフサンゾニ（ファンゲゾード）が追加されて5剤の抗真菌剤に対する感受性試験が可能となった。ファンゲゾードについては真菌特異的な細胞壁の主要な構成成分である1,3-β-Dグルカゴン（β-グルカゴンの合成阻害という、既存の抗真菌剤にはみられない新しい作用機序を有する。すでに当院でも使用されており、人に対して毒性が少ないこと、Candida属菌に対して幅広い抗真菌スペクトルを有することなどの理由から、将来的に需要が高まると考えられる。

まとめ

① 抗真菌剤ではAMPH-Bではほとんどの菌に感受性があると思われる。又、5-FCでもC.kruzei以外の菌種には、ほとんど感受性があると思われる。
② 数多くの薬剤では測定濃度域に幅広く分布しているため、感受性株、耐性株が存在していた。
③ 感受性試験用キット（ASTY）はさらにMCFGが追加され、系統別抗真菌剤が充実していても
参考文献

1) 戸坂雅一、山根誠久：酵母様真菌の薬剤感受性検査．検査と技術．23：687-693，1995．
2) 山田俊昭、古田栄：抗真菌剤感受性試験の現状と今後の展望．第11回春期大会記録．Lab. In Prac.t.19(2)：66-69，2001．【引用2002-8-28】

http://www.juclap.org/LabCP19-2/p066.html
3) 三上浩．森崎．前崎幹文：臨床に活かせる深在性真菌症検査法．微生物学センス．東京，2002．
4) 山口英之：病原真菌と真菌症．南山堂．東京，2000．
5) 山田俊昭：真菌の薬剤感受性検査法．Medical Technology.29：1075-1080，2001．
6) 豊川真弘．岩村誠志：話題の真菌症．薬剤感受性検査．Medical Technology.30：1172-1178，2002．